Welcome to
Издательство Атмосфера

· Журналы
· Книги
· О проекте

·Электронные версии книг издательства “Атмосфера” поступили в продажу

Издательство “Атмосфера” идет в ногу со временем и открывает на своем сайте раздел электронных версий своих книг. Теперь вы можете приобрести не только традиционную бумажную книгу в картонном переплете, но и .pdf-файл, снабженный гиперссылками на каждую главу издания. В электронной версии проще отыскать рисунок и таблицу. Чтобы обратиться к ним, достаточно нажать на ссылку на каждый из них. Исчезла зависимость от тиража – вы можете приобрести даже те бестселлеры, тираж которых уже разошелся, такие как “Саркоидоз” или “Заболевания органов дыхания при беременности”. Упростилось получение вами книг – в течение двух рабочих дней после оплаты требуемые файлы придут на ваш e-mail. Ну и наконец, цена – электронные версии наших книг гораздо дешевле, чем бумажные издания. Заказывайте электронные версии книг издательства “Атмосфера” на сайте, а также по телефону: (495) 730-63-51 и по e-mail: atm-press2012@yandex.ru



ИНТЕРНЕТ-МАГАЗИН
Издательство Атмосфера


Телефон издательства

  
Лечебное дело
2023 / N 1

Путь от диабетической кардиомиопатии к сердечной недостаточности: роль различных видов гибели кардиомиоцитов и возможности коррекции
Ю.В. Лискова, А.Д. Старченко, О.А. Кисляк, Ю.Б. Червякова, М.А. Громова

Список литературы/References

1. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 10-й выпуск. Под ред. Дедова И.И., Шестаковой М.В., Майорова А.Ю. Сахарный диабет. 2021;24(1S):1-148. Standards of specialized diabetes care. 10th edition. Dedov II, Shestakova MV, Mayorov AYu, editors. Diabetes Mellitus. 2021;24(1S):1-148. (In Russ.).] DOI: 10.14341/DM12802
2. Караваев П.Г., Веклич А.С., Козиолова Н.А. Диабетическая кардиомиопатия: особенности сердечно-сосудистого ремоделирования. Российский кардиологический журнал. 2019;24(11):42-47. [Karavayev PG, Veklich AS, Koziolova NA. Cardiovascular remodeling in patients with diabetic cardiomyopathy. Russian Journal of Cardiology. 2019;24(11):42-47. (In Russ.).] DOI: 10.15829/1560-4071-2019-11-42-47
3. Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circulation Research. 2019;124(1):121-141. DOI: 10.1161/ CIRCRESAHA.118.311371
4. Garcia MJ, McNamara PM, Gordon T, Kannel WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen-year follow-up study. Diabetes. 1974;23(2):105-111. DOI: 10.2337/diab.23.2.105
5. Althunibat OY, Al Hroob AM, Abukhalil MH, Germoush MO, Bin-Jumah M, Mahmoud AM. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sciences. 2019;221:83-92. DOI: 10.1016/j.lfs.2019.02.017
6. Mittal A, Garg R, Bahl A, Khullar M. Molecular mechanisms and epigenetic regulation in diabetic cardiomyopathy. Frontiers in Cardiovascular Medicine. 2021;8:725532. DOI: 10.3389/fcvm.2021.725532
7. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiological Reviews. 2019;99(4):1765-1817. DOI: 10.1152/physrev.00022.2018
8. Galluzzi, L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation. 2018;25(3):486-541. DOI: 10.1038/s41418-017-0012-4
9. Деев Р.В., Билялов А.И., Жампеисов Т.М. Современные представления о клеточной гибели. Гены и клетки. 2018;13(1):6-19. [Deyev RV, Bilyalov AI, Zhampeisov TM. Modern ideas about cell death. Genes & Cells. 2018;13(1):6-19. (In Russ.).] DOI: 10.23868/201805001
10. Wei J, Zhao Y, Liang H, Do W, Wang L. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharmaceutica Sinica B. 2022;12(1):1-17. DOI: 10.1016/j.apsb.2021.08.026
11. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International. 2019;43(6):582-592. DOI: 10.1002/cbin.11137
12. Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR. Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy? Hormone and Metabolic Research. 2007;39(9):672-676. DOI: 10.1055/s-2007-985823
13. Давыдов А.Л., Баранова Л.Ю. Особенности гисто- и ультраструктурной организации миокарда и стенки сосудов у больных сахарным диабетом типа 2. Проблемы эндокринологии. 2005;51(3):33-38. [Davydov AL, Baranova LYu. The histo- and ultrastructural characteristics of the myocardium and vascular wall in patients with type 2 diabetes mellitus. Problems of Endocrinology. 2005;51(3):33-38. [(In Russ.).] DOI: 10.14341/probl200551333-38
14. Joubert M, Manrique A, Cariou B, Prieur X. Diabetes-related cardiomyopathy: the sweet story of glucose overload from epidemiology to cellular pathways. Diabetes & Metabolism. 2019;45(3):238-247. DOI: 10.1016/j.diabet.2018.07.003
15. Varela R, Rauschert I, Romanelli G, Alberro A, Benech JC. Hyperglycemia and hyperlipidemia can induce morphophysiological changes in rat cardiac cell line. Biochemistry and Biophysics Reports. 2021;26:100983. DOI: 10.1016/j.bbrep.2021.100983
16. Wu W, Liu X, Han L. Apoptosis of cardiomyocytes in diabetic cardiomyopathy involves overexpression of glycogen synthase kinase-3β. Bioscience Reports. 2019;39(1):BSR20171307. DOI: 10.1042/BSR20171307
17. Ji L, Liu F, Jing Z, Huang Q, Zhao Y, Cao H, Li J, Yin C, Xing J, Li F. MICU1 alleviates diabetic cardiomyopathy through mitochondrial Ca2þ-dependent antioxidant response. Diabetes. 2017;66(6):1586-1600. DOI: 10.2337/db16-1237
18. Zhang M, Zhang L, Hu J, Lin J, Wang T, Duan Y, Man W, Feng J, Sun L, Jia H, Li C, Zhang R, Wang H, Sun D. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia. 2016;59(11):2435-2447. DOI: 10.1007/s00125-016-4070-9
19. Zhang M, Lin J, Wang S, Cheng Z, Hu J, Wang T, Man W, Yin T, Guo W, Gao E, Reiter RJ, Wang H, Sun D. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. Journal of Pineal Research. 2017;63(2):e12418. DOI: 10.1111/jpi.12418
20. You P, Cheng Z, He X, Deng J, Diao J, Chen H, Cheng G. Lin28a protects against diabetic cardiomyopathy through Mst1 inhibition. Journal of Cellular Physiology. 2020;235(5):4455-4465. DOI: 10.1002/jcp.29321
21. Gu J, Wang S, Guo H, Tan Y, Liang Y, Feng A, Liu Q, Damodaran C, Zhang Z, Keller BB, Zhang C, Cai L. Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death & Disease. 2018;9(2):82. DOI: 10.1038/s41419-017-0093-5
22. Tan X, Hu L, Shu Z, Li X, Du M, Sun D, Mao X, Deng S, Huang K, Zhang F. Role of CCR2 in the development of streptozotocin-treated diabetic cardiomyopathy. Diabetes. 2019;68(11):2063-2073. DOI: 10.2337/db18-1231
23. Dong X, Yu S, Wang Y, Yang M, Xiong J, Hei N, Dong B, Su Q, Chen. (Pro)renin receptor-mediated myocardial injury, apoptosis, and inflammatory response in rats with diabetic cardiomyopathy. The Journal of Biological Chemistry. 2019;294(20):8218-8226. DOI: 10.1074/jbc.RA119.007648
24. Gao L, Liu Y, Guo S, Xiao L, Wu L, Wang Z, Liang C, Yao R, Zhang Y. LAZ3 protects cardiac remodeling in diabetic cardiomyopathy via regulating miR-21/PPARa signaling. Biochimica and Biophysica Acta. Molecular Basis of Disease. 2018;1864(10):3322-3338. DOI: 10.1016/j.bbadis.2018.07.019
25. Li X, Wang H, Yao B, Xu W, Chen J, Zhou X. LncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Scientific Reports. 2016;6:36340. DOI: 10.1038/srep36340
26. Xing R, Liu D, Cheng X, Tian X, Yan C, Han Y. MiR-207 inhibits autophagy and promotes apoptosis of cardiomyocytes by directly targeting LAMP2 in type 2 diabetic cardiomyopathy. Biochemical and Biophysical Research Communication. 2019;520(1):27-34. DOI: 10.1016/j.bbrc.2019.09.092
27. Chen Y, Tan S, Liu M, Li J. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scandinavian Cardiovascular Journal. 2018;52(6):335-339. DOI: 10.1080/14017431.2018.1546896
28. Zhang L, Ding WY, Wang ZH, Tang MX, Wang F, Li Y, Zhong M, Zhang Y, Zhang W. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. Journal of Translational Medicine. 2016;14(1):109. DOI: 10.1186/s12967-016-0849-1
29. Wang X, Pan J, Liu D, Zhang M, Li X, Tian J, Liu M, Jin T, An F. Nicorandil alleviates apoptosis in diabetic cardiomyopathy through PI3K/Akt pathway. Journal of Cellular and Molecular Medicine. 2019;23(8):5349-5359. DOI: 10.1111/jcmm.14413
30. Zuo G, Ren X, Qian X, Ye P, Luo J, Gao X, Zhang J, Chen S. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. Journal of Cellular Physiology. 2019;234(2):1925-1936. DOI: 10.1002/jcp.27070
31. Ge Q, Zhao L, Ren XM, Ye P, Hu ZY. LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Experimental Biology and Medicine (Maywood, N.J.). 2019;244(12):1028-1039. DOI: 10.1177/1535370219861283
32. Abdel-Hamid AA, Firgany AEl-D. Atorvastatin alleviates experimental diabetic cardiomyopathy by suppressing apoptosis and oxidative stress. Journal of Molecular Histology. 2015;46(4-5):337-345. DOI: 10.1007/s10735-015-9625-4
33. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B. Exercise induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481(7382):511-515. DOI: 10.1038/nature10758
34. Li Y, Wang Y, Zou M, Chen C, Chen Y, Xue R, Dong Y, Liu C. AMPK blunts chronic heart failure by inhibiting autophagy. Bioscience Reports. 2018;38(4):BSR20170982. DOI: 10.1042/BSR20170982
35. Wang L, Yuan D, Zheng J, Wu X, Wang J, Liu X, He Y, Zhang C, Liu C, Wang T, Zhou Z. Chikusetsu saponin IVa attenuates isoprenaline-induced myocardial fibrosis in mice through activation autophagy mediated by AMPK/mTOR/ULK1 signaling. Phytomedicine. 2019;58:152764. DOI: 10.1016/j.phymed.2018.11.024
36. Guan Y, Zhou L, Zhang Y, Tian H, Li A, Han X. Effects of PP2A/ Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway. Cellular Signalling. 2019;62:109339. DOI: 10.1016/j.cellsig.2019.06.004
37. Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, Lv J, Li Y, Yu Y, Bai Y, Wang L. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR dependent effects in diabetic cardiomyopathy. International Journal of Biological Sciences. 2019;15(5):1010-1019. DOI: 10.7150/ijbs.29680
38. Castoldi F, Humeau J, Martins I, Lachkar S, Loew D, Dingli F, Durand S, Enot D, Bossut N, Chery A, Aprahamian F, Demont Y, Opolon P, Signolle N, Sauvat A, Semeraro M, Bezu L, Baracco EE, Vacchelli E, Pol JG, Lévesque S, Bloy N, Sica V, Maiuri MC, Kroemer G, Pietrocola F. Autophagy-mediated metabolic effects of aspirin. Cell Death Discovery. 2020;6(1):129. DOI: 10.1038/s41420-020-00365-0
39. Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein & Cell. 2022;13(5):336-359. DOI: 10.1007/s13238-020-00809-4
40. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY, Li CJ. Current mechanistic concepts in ischemia and reperfusion injury. Cellular Physiology and Biochemistry. 2018;46(4):1650-1667. DOI: 10.1159/000489241
41. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P. Myocardial cell death in human diabetes. Circulation Research. 2000;87(12):1123-1132. DOI: 10.1161/01.RES.87.12.1123
42. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Research. 2019;29(5):347-364. DOI: 10.1038/s41422-019-0164-5
43. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao CM, Xiao RP. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nature Medicine. 2016;22(2):175-182. DOI: 10.1038/nm.4017
44. Sun L, Chen Y, Luo H, Xu M, Meng G, Zhang W. Ca(2+)/calmodulin-dependent protein kinase II regulation by inhibitor 1 of protein phosphatase 1 alleviates necroptosis in high glucose-induced cardiomyocytes injury. Biochemical Pharmacology. 2019;163:194-205. DOI: 10.1016/j.bcp.2019.02.022
45. Song S, Ding Y, Dai GL, Zhang Y, Xu MT, Shen JR, Chen TT, Chen Y, Meng GL. Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation. Acta Pharmacologica Sinica. 2021;42(2):230-241. DOI: 10.1038/s41401-020-0490-7
46. Robinson N, Ganesan R, Hegedus C, Kovács K, Kufer TA, Virág L. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos. Redox Biology. 2019;26:101239. DOI: 10.1016/j.redox.2019.101239
47. Jeyabal P, Thandavarayan RA, Joladarashi D, Suresh Babu S, Krishnamurthy S, Bhimaraj A, Youker KA, Kishore R, Krishnamurthy P. MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochemical and Biophysical Research Communications. 2016;471(4):423-429. DOI: 10.1016/j.bbrc.2016.02.065
48. Wang X, Pan J, Liu H, Zhang M, Liu D, Lu L, Tian J, Liu M, Jin T, An F. AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model. Life Sciences. 2019;221:249-258. DOI: 10.1016/j.lfs.2019.02.035
49. Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X, Che H, Han T, Meng S, Bai Y, Wang L. LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cellular Physiology and Biochemistry. 2018;50(4):1230-1244. DOI: 10.1159/000494576
50. Wei H, Bu R, Yang Q, Jia J, Li T, Wang Q, Chen Y. Exendin-4 protects against hyperglycemia-induced cardiomyocyte pyroptosis via the AMPK-TXNIP pathway. Journal of Diabetes Research. 2019;2019:8905917. DOI: 10.1155/2019/8905917
  

[ Содержание выпуска N 1 | Выпуски журнала | Список журналов ]