Welcome to
Èçäàòåëüñòâî Àòìîñôåðà

· Æóðíàëû
· Êíèãè
· Î ïðîåêòå

·Ýëåêòðîííûå âåðñèè êíèã èçäàòåëüñòâà “Àòìîñôåðà” ïîñòóïèëè â ïðîäàæó

Èçäàòåëüñòâî “Àòìîñôåðà” èäåò â íîãó ñî âðåìåíåì è îòêðûâàåò íà ñâîåì ñàéòå ðàçäåë ýëåêòðîííûõ âåðñèé ñâîèõ êíèã. Òåïåðü âû ìîæåòå ïðèîáðåñòè íå òîëüêî òðàäèöèîííóþ áóìàæíóþ êíèãó â êàðòîííîì ïåðåïëåòå, íî è .pdf-ôàéë, ñíàáæåííûé ãèïåðññûëêàìè íà êàæäóþ ãëàâó èçäàíèÿ.  ýëåêòðîííîé âåðñèè ïðîùå îòûñêàòü ðèñóíîê è òàáëèöó. ×òîáû îáðàòèòüñÿ ê íèì, äîñòàòî÷íî íàæàòü íà ññûëêó íà êàæäûé èç íèõ. Èñ÷åçëà çàâèñèìîñòü îò òèðàæà – âû ìîæåòå ïðèîáðåñòè äàæå òå áåñòñåëëåðû, òèðàæ êîòîðûõ óæå ðàçîøåëñÿ, òàêèå êàê “Ñàðêîèäîç” èëè “Çàáîëåâàíèÿ îðãàíîâ äûõàíèÿ ïðè áåðåìåííîñòè”. Óïðîñòèëîñü ïîëó÷åíèå âàìè êíèã – â òå÷åíèå äâóõ ðàáî÷èõ äíåé ïîñëå îïëàòû òðåáóåìûå ôàéëû ïðèäóò íà âàø e-mail. Íó è íàêîíåö, öåíà – ýëåêòðîííûå âåðñèè íàøèõ êíèã ãîðàçäî äåøåâëå, ÷åì áóìàæíûå èçäàíèÿ. Çàêàçûâàéòå ýëåêòðîííûå âåðñèè êíèã èçäàòåëüñòâà “Àòìîñôåðà” íà ñàéòå, à òàêæå ïî òåëåôîíó: (495) 730-63-51 è ïî e-mail: atm-press2012@yandex.ru



ÈÍÒÅÐÍÅÒ-ÌÀÃÀÇÈÍ
Èçäàòåëüñòâî Àòìîñôåðà


Òåëåôîí èçäàòåëüñòâà

  
Ïðàêòè÷åñêàÿ ïóëüìîíîëîãèÿ (ðàíåå – "Àòìîñôåðà. Ïóëüìîíîëîãèÿ è àëëåðãîëîãèÿ"): ISSN 2409-756X (Online), ISSN 2409-6636 (Print)
2004 / N 1

Àíòèìèêðîáíàÿ àêòèâíîñòü ëåâîôëîêñàöèíà (Ñïèñîê ëèòåðàòóðû)
Ñ.Ä. Ìèòðîõèí

Ïðîäîëæåíèå ñïèñêà ëèòåðàòóðû.
16. Sahm D. F. , Critchley I. A., Kelly L. J. et al. Evaluation of current activities of fluoroquinolones against gram-negative bacilli using centralized in vitro testing and electronic surveillance. Antimicrob Agents Chemother. 2001. V. 45. P. 267–74.
17. Barry A. L., Fuchs P. C., Brown S. D. In vitro activities of three nonfluorinated quinolones against representative bacterial isolates. Ibid. 1923–1927.
18. Drusano G. L., Johnson D., Rosen M. Pharmacodynamics of fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Ibid. 1993. V. 37. P. 483–490.
19. Fox K. K., Knapp J. S., Holmess K. K. Antimicrobial resistance in Neisseria gonorrhoeae in the United States, 1988–1994: the emergence of decreased susceptibility to the fluoroquinolones. J Infect Dis 1997. V. 175. P. 1396–1403.
20. Fukuda H., Hosaka M., Iyobe S. et al. nfxC-type quinolones resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995. V. 39. P. 790–792.
21. Goni H., Jiang Z-D., Adachi J. A. et al. In vitro antimicrobial susceptibility testing of bacterial enteropathogens causing travelers diarrhea in four geographic regions. Ibid. 2001. V. 45. P. 210–216.
22. Oethinger M., Kern W. V., Jellen-Ritter A. S. et al. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Esherichia coli in the absence of the acrAB efflux pump. Ibid. 2000. V. 44. P. 10–13.
23. Une T, Fujimoto T, Sato K, Osada Y. Ibid. 1988. V. 32. P. 1336–1340.
24. Vila J., Vargas M., Ruiz J. et al. Quinolone resistance in enterotoxigenic Esherichia coli causing diarrhea in travelers to India in comparison with other geographical areas. Ibid. 2000. V. 44. P. 1731–1733.
25. Yoshida H., Bogahi M., Nakamura M. et al. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Esherichia coli. Ibid. 1990. V. 34. P. 1271–1272.
26. Yoshida H., Muratani T., Iyobe S. et al. Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa. Ibid. 1994. V. 38. P. 1466–1469.
27. Waites K., Rand K., Jenkins S. et al. Multicenter in vitro comparative study of fluoroquinolones after four years of widespread clinical use. Diagn. Microbiol Infect 1994. V. 3. P. 181–189.
28. Bonfiglo G., Cascone C., Azzarelli C. et al. Levofloxacin in vitro activity and time-kill evaluation of Stenotrophomonas maltophilia clinical isolates. J Antimicrob Chemother 2000. V. 45. P. 115–117.
29. Denton M., Kerr K. G. Microbial and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 1998. V. 11. P. 57–80.
30. Lecso-Bornet M., Pierre J., Sarkis-Karam P. et al. Susceptibility of Xantomonas maltophilia to six quinolones and study of outer membrane proteins in resistant mutants selected in vitro. Antimicrob Agents Chemother 1992. V. 36. P. 669–671.
31. Lomovskaya O., Warren M. S., Lee A. et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa. Ibid. 2001. V. 45. P. 105–106.
32. Nakano M., Deguchi I., Kawamura J. et al. Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa. Ibid. 1997. V. 41. P. 2289–2291.
33. Poole K., Krebes K., Mc Nally C. et al. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993. V. 175. P. 7363–7372.
34. Renau T., Leger R., Flamme E. et al. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 1999. V. 42. P. 4928–4931.
35. Schmitz F. J., Sadurski R., Verhoef J. et al. Typing of 154 clinical isolates of Stenotrophomonas maltophilia by pulsed field gel electrophoresis and determination of the in vitro susceptibilities of these strains to 28 antibiotics. J Antimicrob Chemother 2000. V. 45. P. 921–924.
36. Tornsberry C. Susceptibility of clinical bacterial isolates to ciprofloxacin in the United States. Infection 1994. V. 22. Suppl. 2. P. 380–389.
37. Tornsberry C., Sahm D. F. Antimicrobial resistance in respiratory tract pathogenes: results of international surveillance study. J Chemother 1999. V. 46. Suppl. 1. P. 15–23.
38. Pestova E., Millichap J., Noskin G., et al. Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. J Antimicrob Chemother 2000. V. 45. P. 583–590.
39. Blondean J. M., Zhoo X., Hanson G. et al. Mutant prevention concentrations of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 2001. V. 45. P. 589–592.
40. Chen D. K., Mc Geer A., De Azavedo J. C. et al. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. New Engl J Med 1999. V. 341. P. 233–239.
41. Doern G. V., Brueggemann A. B., Holley H. P. et al. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994 to 1995: results for a 30- center national surveillance study. Antimicrob Agents Chemother 1996. V. 40. P. 1208–1213.
42. Doern G. V., Pfaller M. A., Kugler K. et al. Prevalense of antimicrobial resistance among respiratory tract isolates of Streptococcus pneumoniae in North America. P. 1997 results from the Sentry antimicrobial surveillance program. Clin Infect Dis 1998. V. 27. P. 764–770.
43. Doern G. V., Brueggemann A. B., Holley H. P. et al. Antimicrobial resistance with Streptococcus pneumoniae in the United States 1997-1998. Emerg Infect Dis 1999. V. 5. P. 757–765.
44. Fukuda H., Hiramatsu K. Primary target of fluoroquinolones in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1999. V. 43. P. 410–412.
45. Gootz T., Zaniewski R., Haskel S. et al. Activity of the new fluoroquinolone trovafloxacin (CP-99,219) against DNA gyrase and topoisomerase IV mutans of Streptococcus pneumoniae selected in vitro. Ibid. 1996. V. 40. P. 2691–697.
46. Gootz T., Zaniewski R., Haskel S. Activities of trovafloxacin compared with those of other fluoroquinolones against purified topoisomerases and grlA mutants of Staphylococcus aureus. Ibid. 1999. V. 43. P. 1845–1855.
47. Ho P. L., Que T., Tsang D. N-E. et al. Emergence of fluoroquinolones resistance among multiply resistant strain of Streptococcus pneumoniae in Hong Kong. Ibid. 1310–1313.
48. Hoellman D. B., Kelly L. M., Jacobs M. R. et al. Comparative antianaerobic activity of BMS 284756. Ibid. 2001. V. 45. P. 589–592.
49. Ito H., Yoshida H., Bogaki-Shonai M. et al. Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Ibid. 1994. V. 38. P. 2014–023.
50. Jones M. E., Sahm D. F., Martin N. et al. Prevalence of gyrA , gyrB, parC and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different fluoroquinolones and originating from worldwide surveillance studies during the 1997–1998 respiratory season. Ibid. 2000. V. 44. P. 462–466.
51. Khurshid M. A., Chou T, Carey R et al. Staphylococcus aureus with reduced susceptibility to vancomycin. Illinois,1999. VVWP 2000. V. 48. P. 1165–1167.
52. Linde M-S., Schmidt M., Fuchs E. In vitro activities of six quinolones and mechanisms of resistance in Staphyloccocus aureus and coagulase-negative staphyloccocus. Antimicrob Agents Chemother 2001. V. 45. P. 1553–1557.
53. Munoz-Bellido J. L., Alonso-Manzanares M. A., Yague- Guirao G. In vitro activities of 13 fluoroquinolones against Staphyloccocus aureus isolates with characterized mutations in gyrA, gyrB, grlA and norA and against wild-type isolates. Ibid. 1999. V. 43. P. 966–968.
54. Sahm D. F., Karlowsky S. A., Kelly L. J. et al. Need for annual surveillance of antimicrobial resistance in Streptococcus pneumoniae in the United States. P. 2-year longitudinal analysis. Ibid. 2001. V. 45. P. 1037–1042.
55. Schmitz F. J., Jones M. E., Hofmann B. et al. Characterization of gyrA, gyrB, grlA and grlB mutations in 116 unrelated isolates of Staphylococcus aureus and effects of mutations on ciprofloxacin MIC. Ibid. 1998. V. 42. P. 1249–1252.
56. Takanata M., Yonezawa M., Natsubara N. et al. Antibacterial activity of quinolones against coagulase-negative staphylococci and the quinolone resistance-determining region of the gyrA genes from six species. J Antimicrob Chemother 1997. V. 40. P. 384– 386.
57. Tanaka M., Onodera Y., Uchida K. et al. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV purified from Staphylococcus aureus. Antimicrob Agents Chemother 1997. V. 41. P. 2362–2366.
58. Blondean J. A review of clinical trials with fluroquinolones with an emphasis on new agents. Expert Opin. Invest Drugs 2000. V. 59. P. 383–413.
59. King A., May J., French G. et al. Comparative in vitro activity of gemifloxacin. J Antimicrob Chemother 2000. V. 45. P. Suppl. 1. P. 1–12.
60. Wise R., Andews J. M. The in vitro activity and tentative breakpoint of gemifloxacin, a new fluoroquinolone. Ibid. 1999. V. 44. P. 679–688.
61. Bildenbach D. J., Jones R. N., Marshall S. A. et al. Antimicrobial activity of gatifloxacin against Stenotrophomonas maltophilia and Burkholderia species. Drugs 1999. V. 58. P. Suppl. 2. P. 180–181.
62. Weigel L. M., Steward C. D., Tenover F. C. gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob Agents Chemother 1998. V. 42. P. 2661–2667.
63. Cohn M. L., Waites K. B. Antimicrobial activities of gatifloxacin against nosocomial isolates of Stenotrophomonas maltophilia measured by MIC and time-kill studies. Ibid. 2001. V. 45. P. 2126–2128.
  

[ Ñîäåðæàíèå âûïóñêà N 1 | Âûïóñêè æóðíàëà | Ñïèñîê æóðíàëîâ ]