Welcome to
Издательство Атмосфера

· Журналы
· Книги
· О проекте

·Электронные версии книг издательства “Атмосфера” поступили в продажу

Издательство “Атмосфера” идет в ногу со временем и открывает на своем сайте раздел электронных версий своих книг. Теперь вы можете приобрести не только традиционную бумажную книгу в картонном переплете, но и .pdf-файл, снабженный гиперссылками на каждую главу издания. В электронной версии проще отыскать рисунок и таблицу. Чтобы обратиться к ним, достаточно нажать на ссылку на каждый из них. Исчезла зависимость от тиража – вы можете приобрести даже те бестселлеры, тираж которых уже разошелся, такие как “Саркоидоз” или “Заболевания органов дыхания при беременности”. Упростилось получение вами книг – в течение двух рабочих дней после оплаты требуемые файлы придут на ваш e-mail. Ну и наконец, цена – электронные версии наших книг гораздо дешевле, чем бумажные издания. Заказывайте электронные версии книг издательства “Атмосфера” на сайте, а также по телефону: (495) 730-63-51 и по e-mail: atm-press2012@yandex.ru



ИНТЕРНЕТ-МАГАЗИН
Издательство Атмосфера


Телефон издательства

  
Нервные болезни
2019 / N 2

Солечувствительность и церебральная микроангиопатия (болезнь мелких сосудов)
Л.А. Добрынина, К.В. Шамтиева, А.А. Шабалина

References

1. Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration. Stroke 1997 Mar;28(3):491-9.
2. Norrving B. Lacunar infarcts: no black holes in the brain are benign. Practical Neurology 2008 Aug;8(4):222-8.
3. Poggesi A, Pracucci G, Chabriat H, Erkinjuntti T, Fazekas F, Verdelho A, Hennerici M, Langhorne P, O’Brien J, Scheltens P, Visser MC, Crisby M, Waldemar G, Wallin A, Inzitari D, Pantoni L; Leukoaraiosis And DISability Study Group. Urinary complaints in nondisabled elderly people with agerelated white matter changes: the Leukoaraiosis And DISability (LADIS) study. Journal of the American Geriatrics Society 2008;56(9):1638-43.
4. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. The Lancet. Neurology 2010 Jul;9(7):689-701.
5. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011 Sep;42(9):2672-713.
6. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. The Lancet. Neurology 2013 May;12(5):483-97.
7. Koltover AN, Morgunov VA, Lyudkovskaya IG, Levina GYa, Lozhnikova SM. Hypertensive angiopathy of the brain. Archive of Pathology 1986;47(11):34-9 (In Russian).
8. Gulevskaya TS, Lyudkovskaya IG. Hypertension and pathology of cerebral white matter. Archive of Pathology 1992;54(2):53-9 (In Russian).
9. Gulevskaya TS, Morgunov VA. Pathological anatomy of cerebral circulation disorders in atherosclerosis and hypertension: a guidance for physicians. Moscow: Meditsina; 2009. 296 p. (In Russian).
10. Fischer CM. Lacunes: small, deep cerebral infarcts. Neurology 1965 Aug;15:774-84.
11. Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathologica 1969 Dec;12(1):1-15.
12. Gannushkina IV, Lebedeva NV. Hypertensive encephalopathy. Moscow: Meditsina; 1987. 224 p. (In Russian).
13. Kaiser D, Weise G, Möller K, Scheibe J, Pösel C, Baasch S, Gawlitza M, Lobsien D, Diederich K, Minnerup J, Kranz A, Boltze J, Wagner DC. Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathologica Communications 2014;2(1):169-83.
14. Dufouil C, de Kersaint-Gilly A, Besançon V, Levy C, Auffray E, Brunnereau L, Alpérovitch A, Tzourio C. Longitudinal study of blood pressure and white matter hyperintensities the EVA MRI cohort. Neurology 2001 Apr;56(7):921-26.
15. Marsh EB, Gottesman RF, Hillis AE, Maygers J, Lawrence E, Llinas RH. Predicting symptomatic intracerebral hemorrhage versus lacunar disease in patients with longstanding hypertension. Stroke 2014 Jun;46(6):1679-83.
16. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010 Jul;341:c3666.
17. The LADIS Study Group, Poggesi A, Pantoni L, Inzitari D, Fazekas F, Ferro J, O’Brien J, Hennerici M, Scheltens P, Erkinjuntti T, Visser M, Langhorne P, Chabriat H, Waldemar G, Wallin A, Wahlund A. 2001-2011: a decade of the LADIS (Leukoaraiosis And DISability) Study: what have we learned about white matter changes and small-vessel disease? Cerebrovascular Diseases 2011;32(6):577-88.
18. Filomena J, Riba-Llena I, Vinyoles E, Tovar JL, Mundet X, Castañé X1, Vilar A, López-Rueda A, Jiménez-Baladó J, Cartanyà A, Montaner J, Delgado P; ISSYS Investigators. Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension. Hypertension 2015 Sep;66(3):634-40.
19. Abraham HM, Wolfson L, Moscufo N, Guttmann CR, Kaplan RF, White WB. Cardiovascular risk factors and small vessel disease of the brain: blood pressure, white matter lesions, and functional decline in older persons. Journal of Cerebral Blood Flow & Metabolism 2016 Jan;36(1):132-42.
20. Dufouil C, Chalmers J, Coskun O, Besançon V, Bousser MG, Guillon P, MacMahon S, Mazoyer B, Neal B, Woodward M, Tzourio-Mazoyer N, Tzourio C; PROGRESS MRI Substudy Investigators. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation 2005 Sep;112(11):1644-50.
21. Sachdev P, Wen W, Chen X, Brodaty H. Progression of white matter hyperintensities in elderly individuals over 3 years. Neurology 2007 Jan;68(3):214-22.
22. Weber R, Weimar C, Blatchford J, Hermansson K, Wanke I, Möller-Hartmann C, Gizewski ER, Forsting M, Demchuk AM, Sacco RL, Saver JL, Warach S, Diener HC, Diehl A; PRoFESS Imaging Substudy Group. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the prevention regimen for effectively avoiding second strokes (PRoFESS) MRI substudy. Stroke 2012 Sep;43(9):2336-42.
23. Munroe PB, Barnes MR, Caulfield MJ. Advances in blood pressure genomics. Circulation Research 2013 Mar;112(10):1365-79.
24. Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. Journal of Cerebral Blood Flow & Metabolism 2016 Jan;36(1):72-94.
25. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, Hamza S, Speed J, Hall ME. Hypertension: physiology and pathophysiology. Comprehensive Physiology 2012 Oct;2(4):2393-442.
26. Arnold R, Issar T, Krishnan AV, Pussell BA. Neurological complications in chronic kidney disease. JRSM Cardiovascular Disease 2016 Nov;5:2048004016677687.
27. Kim SW. Hypernatemia: successful treatment. Electrolyte & Blood Pressure 2006 Nov;4(2):66-71.
28. Kempner W. Treatment of hypertensive vascular disease with rice diet. The American Journal of Medicine 1948 Apr;4(4):545-77.
29. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 1984;6:820-5.
30. World Health Organization. Guideline: sodium intake for adults and children, 2012. Geneva, Switzerland: WHO; 56 p. Available from: https://apps.who.int/iris/rest/bitstreams/110243/retrieve Accessed 2019 Sep 20.
31. Weinberger MH. Salt sensitivity is associated with an increased mortality in both normal and hypertensive humans. Journal of Clinical Hypertension (Greenwich, Conn.) 2002 Jul-Aug;4(4):274-6.
32. Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. Journal of the American College of Cardiology 2015 Mar;65(10):1042-50.
33. Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 2009 Nov;339:b4567.
34. He FJ, MacGregor GA. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. The Lancet 2011 Jul;378(9789):380-2.
35. Yamori Y, Horie R, Nara Y, Tagami M, Kihara M, Mano M, Ishino H. Pathogenesis and dietary prevention of cerebrovascular diseases in animal models and epidemiological evidence for the applicability in man. In: Prevention of cardiovascular diseases, an approach to active long life. Yamori Y, Lenfant C, editors. Amsterdam, Netherlands: Elsevier; 1987: 163-77.
36. Okamoto K, Yamamoto K, Morita N, Ohta Y, Chikugo T, Higashizawa T, Suzuki T. Establishment and use of the M strain of stroke-prone spontaneously hypertensive rat. Journal of Hypertension. Supplement 1986 Oct;4(3):S21-4.
37. Heye AK, Thrippleton MJ, Chappell FM, Hernández Mdel C, Armitage PA, Makin SD, Maniega SM, Sakka E, Flatman PW, Dennis MS, Wardlaw JM. Blood pressure and sodium: association with MRI markers in cerebral small vessel disease. Journal of Cerebral Blood Flow & Metabolis 2016 Jan;36(1):264-74.
38. Makin S, Mubki GF, Doubal FN, Shuler K, Staals J, Dennis MS, Wardlaw JM. Small vessel disease and dietary salt intake: cross-sectional study and systematic review. Journal of Stroke and Cerebrovascular Diseases 2017 Dec;26(12):3020-8.
39. Litvitskiy PF. Clinical pathophysiology. Moscow: Practicheskaya Meditsina; 2015. 776 p. (In Russian).
40. Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Advances in Experimental Medicine and Biology 2017;956:61-84.
41. Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, Inenaga T, Kimura G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. The Lancet 1997 Dec;350(9093):1734-7.
42. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 2001 Feb;37(2 Pt 2):429-32.
43. Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation: overriding dominance of the kidneys in long-term regulation and in hypertension. The American Journal of Medicine 1972 May;52(5):584-94.
44. Guyton AC. Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 1990 Nov;259(5 Pt 2):R865-77.
45. Luzardo L, Noboa O, Boggia J. Mechanisms of salt-sensitive hypertension. Current Hypertension Reviews 2015;11(1):14-21.
46. Schmidlin O, Forman A, Sebastian A, Morris RC Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension 2007 May;49(5):1032-9.
47. Strazzullo P, Barbato A, Vuotto P, Galletti F. Relationships between salt sensitivity of blood pressure and sympathetic nervous system activity: a short review of evidence. Clinical and Experimental Hypertension 2001 Jan-Feb;23(1-2):25-33.
48. Fujita T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. Journal of the American Society of Nephrology 2014 Jun;25(6):1148-55.
49. Baldo MP, Rodrigues SL, Mill JG. High salt intake as a multifaceted cardiovascular disease: new support from cellular and molecular evidence. Heart Failure Reviews 2015 Jul;20(4):461-74.
50. Alvarez V, Quiroz Y, Nava M, Pons H, Rodríguez-Iturbe B. Overload proteinuria is followed by salt-sensitive hypertension caused by renal infiltration of immune cells. American Journal of Physiology. Renal Physiology 2002 Nov;283(5):F1132-41.
51. Hoch NE, Guzik TJ, Chen W, Deans T, Maalouf SA, Gratze P,Wyand C, Harrison DG. Regulation of T-cell function by endogenously produced angiotensin II. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2009 Feb;296(2):R208-16.
52. Sriramula S, Haque M, Majid DS, Francis J. Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 2008 May;51(5):1345-51.
53. Chamarthi B, Williams GH, Ricchiuti V, Srikumar N, Hopkins PN, Luther JM, Jeunemaitre X, Thomas A. Inflammation and hypertension: the interplay of interleukin-6, dietary sodium, and the renin-angiotensin system in humans. American Journal of Hypertension 2011 Oct;24(10):1143-8.
54. Weigert C, Brodbeck K, Klopfer K, Häring HU, Schleicher ED. Angiotensin II induces human TGF-beta 1 promoter activation: similarity to hyperglycaemia. Diabetologia 2002 Jun;45(6):890-8.
55. Gu JW, Tian N, Shparago M, Tan W, Bailey AP, Manning RD Jr. Renal NF-kappaB activation and TNF-alpha upregulation correlate with salt-sensitive hypertension in Dahl salt-sensitive rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2006 Dec;291(6):R1817-24.
56. Safar ME, Temmar M, Kakou A, Lacolley P, Thornton SN. Sodium intake and vascular stiffness in hypertension. Hypertension 2009 Aug;54(2):203-9.
57. Ying WZ, Sanders PW. Dietary salt increases endothelial nitric oxide synthase and TGF-β1 in rat aortic endothelium. The American Journal of Physiology. Heart and Circulatory Physiology 1999 Oct;277(4):H1293-8.
58. Gates PE, Tanaka H, Hiatt WR, Seals DR. Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension 2004 Jul;44(1):35-41.
59. Foulquier S, Dupuis F, Perrin-Sarrado C, Maguin Gaté K, Merhi-Soussi F, Liminana P, Kwan YW, Capdeville-Atkinson C, Lartaud I, Atkinson J. High salt intake abolishes AT(2)-mediated vasodilation of pial arterioles in rats. Journal of Hypertension 2011 Jul;29(7):1392-9.
60. Zhu J, Yu M, Friesema J, Huang T, Roman RJ, Lombard JH. Salt-induced ANG II suppression impairs the response of cerebral artery smooth muscle cells to prostacyclin. American Journal of Physiology. Heart and Circulatory Physiology 2005 Feb;288(2):H908-13.
61. Faraco G, Brea D, Garcia-Bonilla L, Wang G, Racchumi G, Chang H, Buendia I, Santisteban MM, Segarra SG, Koizumi K, Sugiyama Y, Murphy M, Voss H, Anrather J, Iadecola C. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nature Neuroscience 2018 Feb;21(2):240-9.
62. Ueno M, Sakamoto H, Tomimoto H, Akiguchi I, Onodera M, Huang CL, Kanenishi K. Blood-brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Acta Neuropathologica 2004 Jun;107(6):532-8.
63. Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, Toyama K, Kataoka K, Koibuchi N, Maeda M, Kuratsu J, Kim-Mitsuyama S. Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. Journal of the American Heart Association 2013 Oct;2(5):e000375.
64. Oberleithner H, Wilhelmi M. Determination of erythrocyte sodium sensitivity in man. Pflügers Archiv. European Journal of Physiology 2013 May;465(10):1459-66.
65. Oberleithner H. Sodium selective erythrocyte glycocalyx and salt sensitivity in man. Pflügers Archiv. European Journal of Physiology 2015 Jun;467(6):1319-25.
66. Sun Y, Zhang JN, Zhao D, Wang QS, Gu YC, Ma HP, Zhang ZR. Role of the epithelial sodium channel in salt-sensitive hypertension. Acta Pharmacologica Sinica 2011 Jun;32(6):789-97.
67. Bragulat E, de la Sierra A, Antonio MT, Coca A. Endothelial dysfunction in salt-sensitive essential hypertension. Hypertension 2001 Feb;37(2):444-8.
68. Laffer CL, Bolterman RJ, Romero JC, Elijovich F. Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension 2006 Mar;47(3):434-40.
69. Kanbay M, Chen Y, Solak Y, Sanders PW. Mechanisms and consequences of salt sensitivity and dietary salt intake. Current Opinion in Nephrology and Hypertension 2011 Jan;20(1):37-43.
70. Matsuoka H, Itoh S, Kimoto M, Kohno K, Tamai O, Wada Y, Yasukawa H, Iwami G, Okuda S, Imaizumi T. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 1997 Jan;29(1 Pt 2):242-7.
71. Sibal L, Agarwal SC, Home PD, Boger RH. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Current Cardiology Reviews 2010 May;6(2):82-90.
72. Bakulin IS, Tanashyan MM, Raskurazhev AA. Endothelial dysfunction and oxidative stress in cerebral atherosclerosis and possibilities of their pathogenetic correction. Nervous Diseases 2018;2:3-10 (In Russian).
73. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, Harrison DG. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 2010 Feb;55(2):500-7.
74. Burnier M, Wuerzner GPD, Bochud M. Salt, blood pressure and cardiovascular risk: what is the most adequate preventive strategy? A Swiss perspective. Frontiers in Physiology 2015;6:227.
75. Zeanandin G, Molato O, Le Duff F, Guérin O, Hébuterne X, Schneider SM. Impact of restrictive diets on the risk of undernutrition in a free-living elderly population. Clinical Nutrition 2012 Feb;31(1):69-73.
76. Van Horn L. Dietary sodium and blood pressure: how low should we go? Progress in Cardiovascular Diseases 2015 Jul-Aug;58(1):61-8.
77. GenSalt Collaborative Research Group. Genetic epidemiology network of salt sensitivity (GenSalt): rationale, design, methods, and baseline characteristics of study participants. Journal of Human Hypertension 2007;21(8):639-46.
78. Zhang X, Frame AA, Williams JS, Wainford RD. GNAI2 polymorphic variance associates with salt sensitivity of blood pressure in the Genetic Epidemiology Network of Salt Sensitivity study. Physiological Genomics 2018;50(9):724-5.
79. Citterio L, Simonini M, Zagato L, Salvi E, Delli Carpini S, Lanzani C, Messaggio E, Casamassima N, Frau F, D’Avila F, Cusi D, Barlassina C, Manunta P. Genes involved in vasoconstriction and vasodilation system affect salt-sensitive hypertension. PLoS One 2011 May;6(5):e19620.
80. Dobrynina LA, Zabitova MR, Kalashnikova LA, Gnedovskaya EV, Piradov MA. Hypertension and cerebral microangiopathy (cerebral small vessel disease): genetic and epigenetic aspects of their relationship. Acta Naturae 2018;10(2):4-16 (In Russian).
81. Carey RM, Schoeffel CD, Gildea JJ, Jones JE, McGrath HE, Gordon LN, Park MJ, Sobota RS, Underwood PC, Williams J, Sun B, Raby B, Lasky-Su J, Hopkins PN, Adler GK, Williams SM, Jose PA, Felder RA. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter. Hypertension 2012 Nov;60(5):1359-66.
82. Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. Nature Clinical Practice Nephrology 2006 Nov;2(11):637-50.
83. Citterio L, Ferrandi M, Delli Carpini S, Simonini M, Kuznetsova T, Molinari I, Dell’ Antonio G, Lanzani C, Merlino L, Brioni E, Staessen JA, Bianchi G, Manunta P. cGMP-dependent protein kinase 1 polymorphisms underlie renal sodium handling impairment. Hypertension 2013 Dec;62(6):1027-33.
84. Felder RA, White MJ, Williams SM, Jose PA. Diagnostic tools for hypertension and salt sensitivity testing. Current Opinion in Nephrology and Hypertension 2013 Jan;22(1):65-76.
85. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005 Jan;120(1):15-20.
86. Liu Y, Taylor NE, Lu L, Usa K, Cowley AW Jr, Ferreri NR, Yeo NC, Liang M. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension 2010 Apr;55(4):974-82.
87. Sõber S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochemical and Biophysical Research Communications 2010 Jan;391(1):727-32.
88. Ling S, Nanhwan M, Qian J, Kodakandla M, Castillo AC, Thomas B, Liu H, Ye Y. Modulation of microRNAs in hypertension-induced arterial remodeling through the beta1 and beta3-adrenoreceptor pathways. Journal of Molecular and Cellular Cardiology 2013 Dec;65:127-36.
89. Robertson S, MacKenzie SM, Alvarez-Madrazo S, Diver LA, Lin J, Stewart PM, Fraser R, Connell JM, Davies E. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension 2013 Sep;62(3):572-8.
90. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. Journal of Human Hypertension 2014 Aug;28(8):510-6.
91. Garza AE, Rariy CM, Sun B, Williams J, Lasky-Su J, Baudrand R, Yao T, Moize B, Hafiz WM, Romero JR, Adler GK, Ferri C, Hopkins PN, Pojoga LH, Williams GH. Variants in striatin gene are associated with salt-sensitive blood pressure in mice and humans. Hypertension 2015 Jan;65(1):211-7.
92. Rodriguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincón J, Chávez M, Parra G, Herrera-Acosta J, Gómez-Garre D, Largo R, Egido J, Johnson RJ. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney International 2001 Jun;59(6):2222-32.
93. Quiroz Y, Pons H, Gordon KL, Rincón J, Chávez M, Parra G, Hrrera-Acosta J, Gómez-Garre D, Largo R, Egido J, Johnson RJ, Rodríguez-Iturbe B. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. American Journal of Physiology. Renal Physiology 2001 Jul;281(1):F38-47.
94. Mattson DL, James L, Berdan EA, Meister CJ. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension 2006 Jul;48(1):149-56.
95. Tian N, Gu JW, Jordan S, Rose RA, Hughson MD, Manning RD Jr. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. American Journal of Physiology. Heart and Circulatory Physiology 2007 Feb;292(2):H1018-25.
96. Mervaala E, Müller DN, Park JK, Dechend R, Schmidt F, Fiebeler A, Bieringer M, Breu V, Ganten D, Haller H, Luft FC. Cyclosporin A protects against angiotensin II-induced end-organ damage in double transgenic rats harboring human renin and angiotensinogen genes. Hypertension 2000 Jan;35(1 Pt 2):360-6.
97. Khraibi AA, Norman RA, Dzielak DJ. Chronic immunosuppression attenuates hypertension in Okamoto spontaneously hypertensive rats. American Journal of Physiology 1984;247(5 Pt 2):H722-6.
98. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. Journal of the American Society of Nephrology 2006 Dec;17(12 Suppl 3):S218-25.
99. Laffer CL, Gainer JV, Waterman MR, Capdevila JH, Laniado-Schwartzman M, Nasjletti A, Brown NJ, Elijovich F. The T8590C polymorphism of CYP4A11 and 20-hydroxyeicosatetraenoic acid in essential hypertension. Hypertension 2008 Mar;51(3):767-72.
100. Williams JM, Murphy S, Burke M, Roman RJ. 20-hydroxyeicosatetraeonic acid: a new target for the treatment of hypertension. Journal of Cardiovascular Pharmacology 2010 Oct;56(4):336-44.
101. Wu CC, Gupta T, Garcia V, Ding Y, Schwartzman ML. 20-HETE and blood pressure regulation: clinical implications. Cardiology in Review 2014 Jan-Feb;22(1):1-12.
102. Dahly-Vernon AJ, Sharma M, McCarthy ET, Savin VJ, Ledbetter SR, Roman RJ. Transforming growth factor-beta, 20-HETE interaction, and glomerular injury in Dahl salt-sensitive rats. Hypertension 2005 Apr;45(4):643-8.
103. Laffer CL, Elijovich F. Differential predictors of insulin resistance in nondiabetic salt-resistant and salt-sensitive subjects. Hypertension 2013 Mar;61(3):707-15.
104. Gilbert K, Nian H, Yu C, Luther JM, Brown NJ. Fenofibrate lowers blood pressure in salt-sensitive but not salt-resistant hypertension. Journal of Hypertension 2013 Apr;31(4):820-9.
105. Lee DL, Wilson JL, Duan R, Hudson T, El-Marakby A. Peroxisome proliferator-activated receptor-α activation decreases mean arterial pressure, plasma interleukin-6, and COX-2 while increasing renal CYP4A expression in an acute model of DOCA-salt hypertension. PPAR Research 2011;2011:502631.
106. Wilson JL, Duan R, El-Marakby A, Alhashim A, Lee DL. Peroxisome proliferator activated receptor- agonist slows the progression of hypertension, attenuates plasma interleukin-6 levels and renal inflammatory markers in angiotensin II infused mice. PPAR Research 2012;2012:645969.
107. Li N. Hypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure. American Journal of Cardiovascular Disease 2012;2(3):208-15.

  

[ Содержание выпуска N 2 | Выпуски журнала | Список журналов ]