Welcome to
Èçäàòåëüñòâî Àòìîñôåðà

· Æóðíàëû
· Êíèãè
· Î ïðîåêòå

·Ýëåêòðîííûå âåðñèè êíèã èçäàòåëüñòâà “Àòìîñôåðà” ïîñòóïèëè â ïðîäàæó

Èçäàòåëüñòâî “Àòìîñôåðà” èäåò â íîãó ñî âðåìåíåì è îòêðûâàåò íà ñâîåì ñàéòå ðàçäåë ýëåêòðîííûõ âåðñèé ñâîèõ êíèã. Òåïåðü âû ìîæåòå ïðèîáðåñòè íå òîëüêî òðàäèöèîííóþ áóìàæíóþ êíèãó â êàðòîííîì ïåðåïëåòå, íî è .pdf-ôàéë, ñíàáæåííûé ãèïåðññûëêàìè íà êàæäóþ ãëàâó èçäàíèÿ.  ýëåêòðîííîé âåðñèè ïðîùå îòûñêàòü ðèñóíîê è òàáëèöó. ×òîáû îáðàòèòüñÿ ê íèì, äîñòàòî÷íî íàæàòü íà ññûëêó íà êàæäûé èç íèõ. Èñ÷åçëà çàâèñèìîñòü îò òèðàæà – âû ìîæåòå ïðèîáðåñòè äàæå òå áåñòñåëëåðû, òèðàæ êîòîðûõ óæå ðàçîøåëñÿ, òàêèå êàê “Ñàðêîèäîç” èëè “Çàáîëåâàíèÿ îðãàíîâ äûõàíèÿ ïðè áåðåìåííîñòè”. Óïðîñòèëîñü ïîëó÷åíèå âàìè êíèã – â òå÷åíèå äâóõ ðàáî÷èõ äíåé ïîñëå îïëàòû òðåáóåìûå ôàéëû ïðèäóò íà âàø e-mail. Íó è íàêîíåö, öåíà – ýëåêòðîííûå âåðñèè íàøèõ êíèã ãîðàçäî äåøåâëå, ÷åì áóìàæíûå èçäàíèÿ. Çàêàçûâàéòå ýëåêòðîííûå âåðñèè êíèã èçäàòåëüñòâà “Àòìîñôåðà” íà ñàéòå, à òàêæå ïî òåëåôîíó: (495) 730-63-51 è ïî e-mail: atm-press2012@yandex.ru



ÈÍÒÅÐÍÅÒ-ÌÀÃÀÇÈÍ
Èçäàòåëüñòâî Àòìîñôåðà


Òåëåôîí èçäàòåëüñòâà

  
Íåðâíûå áîëåçíè
2018 / N 3

Ýíäîôåíîòèïû êàê ãåíåòè÷åñêè äåòåðìèíèðîâàííûå áèîìàðêåðû è èõ çíà÷åíèå äëÿ èññëåäîâàíèé íåéðîäåãåíåðàòèâíûõ çàáîëåâàíèé
Í.Â. Ïîíîìàðåâà, Â.Ô. Ôîêèí, Å.È. Ðîãàåâ, Ñ.Í. Èëëàðèîøêèí

References

1. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. The American Journal of Psychiatry 2003 Apr;160(4):636-45.
2. John B, Lewis KR. Chromosome variability and geographical distribution in insects: chromosome rather than gene variation provide the key to differences among populations. Science 1966 May;152(3723):711-21.
3. de Geus EJ. From genotype to EEG endophenotype: a route for post-genomic understanding of complex psychiatric disease? Genome Medicine 2010 Sep;2(9):63.
4. Baaré WF, Hulshoff Pol HE, Boomsma DI, Posthuma D, de Geus EJ, Schnack HG, van Haren NE, van Oel CJ, Kahn RS. Quantitative genetic modeling of variation in human brain morphology. Cerebral Cortex (New York, N.Y.: 1991) 2001 Sep;11(9):816-24.
5. van Beijsterveldt CE, Boomsma DI. Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review. Human Genetics 1994 Oct;94(4):319-30.
6. van Beijsterveldt CE, Molenaar PC, de Geus EJ, Boomsma DI. Heritability of human brain functioning as assessed by electroencephalography. The American Journal of Human Genetics 1996 Mar;58(3):562-73.
7. Illarioshkin SN. Conformational disease. Moscow: Yanus-K; 2003. 248 p. (In Russian).
8. Yakhno NN, Zakharov VV, Lokshina AB, Koberskaya NN, Mkhitaryan EA. Dementia: guide for physicians. Moscow: Medpress-inform; 2013. 264 p. (In Russian).
9. Braskie MN, Ringman JM, Thompson PM. Neuroimaging measures as endophenotypes in Alzheimer’s disease. International Journal of Alzheimers’ Disease 2011;2011:490140.
10. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991 Feb;349(6311):704-6.
11. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995 Aug;269(5226):973-7.
12. Rogaev EI, Sherrington R, Rogaeva EA, Levensque G, Ikeda M, Liang J, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St George-Hyslop PH. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995 Aug;376(6543):775-8.
13. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993 Aug;43(8):1467-72.
14. Rogaev EI. Genetic factors and a polygenic model of Alzheimer’s disease. Genetika 1999 Nov;35(11):1558-71.
15. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biological Psychiatry 2015 Jan;77(1):43-51.
16. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Annals of Neurology 2006 Mar;59(3):512-9.
17. Snider BJ, Fagan AM, Roe C, Shah AR, Grant EA, Xiong C, Morris JC, Holtzman DM. Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type. Archives of Neurology 2009 May;66(5):638-45.
18. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002 Jul;297(5580):353-6.
19. Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT. Tau pathophysiology in neurodegeneration: a tangled issue. Trends in Neurosciences 2009 Mar;32(3):150-9.
20. Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology 2014 Apr;71(4):505-8.
21. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nature Reviews Drug Discovery 2011 Aug;10(9):698-712.
22. Pimenova AA, Thathiah A, De Strooper B, Tesseur I. Regulation of amyloid precursor protein processing by serotonin signaling. PLoS One 2014 Jan;9(1):e87014.
23. Doody RS, Raman R, Sperling RA, Sethuraman G, Mohs R, Farlow M, Iwatsubo T, Vellas B, Sun X, Ernstrom K, Thomas RG, Aisen PS; Alzheimer’s Disease Cooperative Study. Peripheral and central effects of γ-secretase inhibition by semagacestat in Alzheimer’s disease. Alzheimers’ Research & Therapy 2015;7(1):36.
24. Cruchaga C, Kauwe JS, Mayo K, Spiegel N, Bertelsen S, Nowotny P, Shah AR, Abraham R, Hollingworth P, Harold D, Owen MM, Williams J, Lovestone S, Peskind ER, Li G, Leverenz JB, Galasko D; Alzheimer’s Disease Neuroimaging Initiative; Morris JC, Fagan AM, Holtzman DM, Goate AM. SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer’s disease. PLoS Genetics 2010 Sep;6(9):e1001101.
25. Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon M, Hampel H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimer’s & Dementia 2015 Jan;11(1):58-69.
26. Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K, Bertelsen S, Hinrichs A; Alzheimer’s Disease Neuroimaging Initiative; Fagan AM, Holtzman DM, Morris JC, Goate AM. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Human Molecular Genetics 2012 Oct;21(20):4558-571.
27. Gupta VB, Wilson AC, Burnham S, Hone E, Pedrini S, Laws SM, Lim WL, Rembach A, Rainey-Smith S, Ames D, Cobiac L, Macaulay SL, Masters CL, Rowe CC, Bush AI, Martins RN; AIBL Research Group. Follow-up plasma apolipoprotein E levels in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL) cohort. Alzheimers’ Research & Therapy 2015;7:16.
28. Beissinger M, Buchner J. How chaperones fold proteins. Biological Chemistry 1998 Mar;379(3):245-59.
29. Stein JL, Hua X, Lee S, Ho AJ, Leow AD, Toga AW, Saykin AJ, Shen L, Foroud T, Pankratz N, Huentelman MJ, Craig DW, Gerber JD, Allen AN, Corneveaux JJ, Dechairo BM, Potkin SG, Weiner MW, Thompson P; Alzheimer’s Disease Neuroimaging Initiative. Voxelwise genome-wide association study (vGWAS). NeuroImage 2010 Nov;53(3):1160-74.
30. Dean DC 3rd, Jerskey BA, Chen K, Protas H, Thiyyagura P, Roontiva A, O’Muircheartaigh J, Dirks H, Waskiewicz N, Lehman K, Siniard AL, Turk MN, Hua X, Madsen SK, Thompson PM, Fleisher AS, Huentelman MJ, Deoni SC, Reiman EM. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurology 2014 Jan;71(1):11-22.
31. Xu W, Tan L, Yu JT. The role of PICALM in Alzheimer’s disease. Molecular Neurobiology 2015 Aug;52(1):399-413.
32. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nature Genetics 2009 Oct;41(10):1088-93.
33. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O; European Alzheimer’s Disease Initiative Investigators; de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanché H, Dartigues JF, Tzourio C, Gut I, Van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics 2009 Oct;41(10):1094-9.
34. Golenkina SA, Goltsov AYu, Kuznetsova LI, Grigorenko AP, Andreeva TV, Reshetov DA, Kunizheva SS, Shagam LI, Morozova IYu, Goldenkova-Pavlova IV, Shimshilashvili H, Vyacheslavova OA, Faskhutdinova G, Gareeva AE, Zaynullina AG, Khusnutdinova EK, Puzyrev VP, Stepanov VA, Kolotvin VA, Samokhodskaya LM, Selezneva ND, Gavrilova SI, Rogaev EI. Polymorphism clusterin gene (CLU/APOJ) in Alzheimer’s disease patients and in normal cohorts of the Russian populations. Molecular Biology 2010;44:620-6 (in Russian).
35. Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P, Nairn AC, Lombroso PJ. Abeta-mediated NMDA receptor endocytosis in Alzheimer's disease involves ubiquitination of the tyrosine phosphatase STEP61. Journal of Neuroscience 2010 Apr;30(17):5948-57.
36. Barulli D, Stern Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends in Cognitive Sciences 2013 Oct;17(10):502-9.
37. Gu Y, Honig LS, Schupf N, Lee JH, Luchsinger JA, Stern Y, Scarmeas N. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Dordrecht, Netherlands) 2015;37(2):24.
38. Vlasenko AG, Illarioshkin SN. Neurovisualization in the differential diagnosis of dementia. SS Korsakov Neurology and Psychiatry 2012;112(6):86-90 (In Russian).
39. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J. Correlations between apolipoprotein E 4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences of the USA 2005 Jun;102(23):8299-302.
40. Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K, Miller BL, Kramer JH, Weiner MW. ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Disease and Associated Disorders 2010 Jan-Mar;24(1):19-27.
41. Liu Y, Yu JT, Wang HF, Han PR, Tan CC, Wang C, Meng XF, Risacher SL, Saykin AJ, Tan L. APOE genotype and neuroimaging markers of Alzheimer’s disease: systematic review and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry 2015 Feb;86(2):127-34.
42. Engelborghs S, Gilles C, Ivanoiu A, Vandewoude M. Rationale and clinical data supporting nutritional intervention in Alzheimer’s disease. Acta Clinica Belgica 2014 Jan-Feb;69:17-24.
43. Filippini N, Ebmeier KP, MacIntosh BJ, Trachtenberg AJ, Frisoni GB, Wilcock GK, Beckmann CF, Smith SM, Matthews PM, Mackay CE. Differential effects of the APOE genotype on brain function across the lifespan. NeuroImage 2011 Jan;54(1):602-10.
44. Ponomareva NV, Selesneva ND, Jarikov GA. EEG alterations in subjects at high familial risk for Alzheimer’s disease. Neuropsychobiology 2003;48(3):152-9.
45. Ponomareva NV, Korovaitseva GI, Rogaev EI. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiology of Aging 2008 Jun;29(6):819-27.
46. LaFerla FM. The Alzheimer’s beta-amyloid peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Behavioral Pharmacology 1995 May;6(Suppl):55.
47. Arai T, Ikeda K, Akiyama H, Haga C, Usami M, Sahara N, Iritani S, Mori H. A high incidence of apolipoprotein E 4 allele in middle-aged non-demented subjects with cerebral amyloid beta protein deposits. Acta Neuropathologica 1999 Jan;97(1):82-4.
48. Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Archives of Neurology 2009 Apr;66(4):435-40.
49. Fokin VF, Ponomareva NV, Orlov ON, Lideman RR, Erin AP. Relationship between electrical brain reactions and lipid peroxidation processes in pathological aging. Bulletin of Experimental Biology and Medicine 1989;54(6):682-4 (In Russian).
50. Vokin VF, Ponomareva NV. Energetic physiology of the brain. Moscow: Antidor; 2003. 248 p. (In Russian).
51. Imfeld P, Bodmer M, Schuerch M, Jick SS, Meier CR. Seizures in patients with Alzheimer’s disease or vascular dementia: a population-based nested case–control analysis. Epilepsia 2013 Apr;54(4):700-7.
52. Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, Hegde M, Cornes SB, Henry ML, Nelson AB, Seeley WW, Geschwind MD, Gorno-Tempini ML, Shih T, Kirsch HE, Garcia PA, Miller BL, Mucke L. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurology 2013 Sep;70(11):1158-66.
53. Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu GQ, Palop JJ, Mucke L. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proceedings of the National Academy of Sciences of the USA 2012 Oct;109(42):E2895-903.
54. Bakker A, Albert MS, Krauss G, Speck CL, Gallagher M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage: Clinical 2015 Feb;7:688-98.
55. Ponomareva NV, Andreeva TV, Protasova MS, Shagam LI, Malina DD, Goltsov AY, Fokin VF, Illarioshkin SN, Rogaev EI. Quantitative EEG during normal aging: association with the Alzheimer’s disease genetic risk variant in PICALM gene. Neurobiology of Aging 2017;51:177.e1-177.e8.
56. Ponomareva NV, Andreeva TA, Protasova MS, Malina DD, Zelentsova EP, Mitrofanov AA, Rogaev EI. Asymmetric brain activation in cognitive load and its dependence on apolipoprotein E and clusterin genotypes associated with predisposition to Alzheimer’s disease. In: Proceedings of the all-Russian conference with international participation "Functional hemispheric asymmetry and brain plasticity", Illariushkin SN, Fokin VF, editors. Moscow, RF; 2012 Dec 13–14. Moscow; 2012: 156-9.
57. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW. Patterns of brain activation in people at risk for Alzheimer’s disease. The New England Journal of Medicine 2000 Aug;343(7):450-6.
58. Zenkov LR. EEG changes in the epilepsy treatment with levetiracetam (Keppra). SS Korsakov Journal of Neurology and Psychology 2009;109(11-2):70-7 (In Russian).
59. Jelic V, Julin P, Shigeta M, Nordberg A, Lannfelt L, Winblad B, Wahlund LO. Apolipoprotein E 4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence. Journal of Neurology, Neurosurgery and Psychiatry 1997 Jul;63(1):59-65.
60. Ponomareva N, Andreeva T, Protasova M, Shagam L, Malina D, Goltsov A, Fokin V, Mitrofanov A, Rogaev E. Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults. Frontiers in Aging Neuroscience 2013 Dec;5:86.
61. Moretti DV, Prestia A, Fracassi C, Binetti G, Zanetti O, Frisoni GB. Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease. International Journal of Alzheimer’s Disease 2012;2012:253153.
62. Morgan CD, Murphy C. Individuals at risk for Alzheimer’s disease show differential patterns of ERP brain activation during odor identification. Behavioral and Brain Functions 2012 Jul;8:37.
63. Golob EJ, Ringman JM, Irimajiri R, Bright S, Schaffer B, Medina LD, Starr A. Cortical event-related potentials in preclinical familial Alzheimer disease. Neurology 2009 Nov;73(20):1649-55.
64. Ponomareva NV, Fokin VF, Selesneva ND, Voskresenskaia NI. Possible neurophysiological markers of genetic predisposition to Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders 1998 Sep-Oct;9(5):267-73.
65. Ponomareva NV, Andreeva TV, Protasova MA, Filippova YuV, Kolesnikova EP, Fokin VF, Illarioshkin SN, Rogaev EI. Genetic association of Alzheimer’s risk variant in the PICALM gene with cognitive event-related potentials during aging. Biochemistry 2018;83(9):1351-60 (In Russian).
66. Gnezditskiy VV. Evoked potentials in clinical practice. Moscow: Medpress-inform; 2003. 264 p. (In Russian).
67. Stevens BW, DiBattista AM, William Rebeck G, Green AE. A gene-brain-cognition pathway for the effect of an Alzheimer׳s risk gene on working memory in young adults. Neuropsychologia 2014 Aug;61:143-9.
68. Johansson L, Guo X, Duberstein PR, Hällström T, Waern M, Ostling S, Skoog I. Midlife personality and risk of Alzheimer disease and distress: a 38-year follow-up. Neurology 2014 Oct;83(17):1538-44.
69. Illarioshkin SN, Klyushnikov SA, Seliverstov YuA. Huntington’s disease. Moscow: ATMO; 2018. 472 p. (In Russian).
70. The Huntington’s disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72:971-83.
71. Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA. Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15. Human Molecular Genetics 1993 Oct;2(10):1547-9.
72. Illarioshkin SN, Igarashi S, Onodera O, Markova ED, Nikolskaya NN, Tanaka H, Chabrashwili TZ, Insarova NG, Endo K, Ivanova-Smolenskaya IA. Trinucleotide repeat length and rate of progression of Huntington’s disease. Annals of Neurology 1994 Oct;36(4):630-5.
73. Illarioshkin SN, Ivanova-Smolenskaya ID, Markova ED. A new mechanism of mutation in humans: the expansion of trinucleotide repeats. Russian Journal of Genetics 1995;31(11):1478-89 (In Russian).
74. Che HV, Metzger S, Portal E, Deyle C, Riess O, Nguyen HP. Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Molecular Neurodegeneration 2011 Jan;6(1):1.
75. Arning L, Epplen JT. Genetic modifiers in Huntington’s disease: fiction or fact? Neurogenetics 2013 Nov;14(3-4):171-2.
76. Bečanović K, Nørremølle A, Neal SJ, Kay C, Collins JA, Arenillas D, Lilja T, Gaudenzi G, Manoharan S, Doty CN, Beck J, Lahiri N, Portales-Casamar E, Warby SC, Connolly C, De Souza RA; REGISTRY Investigators of the European Huntington’s Disease Network; Tabrizi SJ, Hermanson O, Langbehn DR, Hayden MR, Wasserman WW, Leavitt BR. A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease. Nature Neuroscience 2015 Jan;18(6):807-16.
77. Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JR, Zetterberg H, Leavitt BR, Kuhn R, Tabrizi SJ, Macdonald D, Weiss A. Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. The Journal of Clinical Investigation 2015 May;125(5):1979-86.
78. Weiss A, Träger U, Wild EJ, Grueninger S, Farmer R, Landles C, Scahill RI, Lahiri N, Haider S, Macdonald D, Frost C, Bates GP, Bilbe G, Kuhn R, Andre R, Tabrizi SJ. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. The Journal of Clinical Investigation 2012;122:3731-6.
79. Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Movement Disorders 2014 Sep;29(11):1434-45.
80. Georgiou-Karistianis N, Gray MA, Domínguez D, Dymowski AR, Bohanna I, Johnston LA, Churchyard A, Chua P, Stout JC, Egan GF. Automated differentiation of pre-diagnosis Huntington’s disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: the IMAGE-HD study. Neurobiology of Disease 2013 Mar;51:82-92.
81. Yudina EN, Illarioshkin SN, Konovalov RN, Gnezditskiy VV. Morphological and functional brain alterations in Huntington’s disease. In: Illariushkin SN, Levin OS, editors. Parkinson’s disease and movement disorders. Guidelines for physicians. Proceedings of the III National Congress on Parkinson’s disease and movement disorders (with international participation). 2014 Sep 21–24; Moscow, RF. Moscow: RKI Sovero press; 2014: 269-83 (In Russian).
82. McKinstry SU, Karadeniz YB, Worthington AK, Hayrapetyan VY, Ozlu MI, Serafin-Molina K, Risher WC, Ustunkaya T, Dragatsis I, Zeitlin S, Yin HH, Eroglu C. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. Journal of Neuroscience 2014;34:9455-72.
83. van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neuroscience 2008 Apr;9:34.
84. Shannon KM. Huntington's disease – clinical signs, symptoms, presymptomatic diagnosis, and diagnosis. Handbook of Clinical Neurology 2011;100:3-13.
85. Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, Paulsen JS, Dhawan V, Eidelberg D. Thalamic metabolism and symptom onset in preclinical Huntington's disease. Brain 2007 Nov;130(Pt 11):2858-67.
86. Wolf RC, Grön G, Sambataro F, Vasic N, Wolf ND, Thomann PA, Saft C, Landwehrmeyer GB, Orth M. Brain activation and functional connectivity in premanifest Huntington’s disease during states of intrinsic and phasic alertness. Human Brain Mapping 2012 Sep;33(73):2161-73.
87. Seliverstov YuA, Seliverstova EV, Konovalov RN, Klyushnikov SA, Krotenkova MV, Illarioshkin SN. Clinical and neuroimaging analysis of Huntington disease using functional magnetic resonance imaging of rest. The Russian Neurology Journal 2015;20(3):11-21 (In Russian).
88. Wolf RC, Vasic N, Schönfeldt-Lecuona C, Landwehrmeyer GB, Ecker D. Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 2007 Nov;130(Pt 11):2845-57.
89. Ponomareva N, Klyushnikov S, Abramycheva N, Malina D, Scheglova N, Fokin V, Ivanova-Smolenskaia I, Illarioshkin S. Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. The Journal of Neurological Science 2014 Sep;344(1-2):114-20.
90. Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, Jones R, Johnson H, Craufurd D, Hicks SL, Kennard C, Landwehrmeyer B, Stout JC, Borowsky B, Scahill RI, Frost C, Langbehn DR; TRACK-HD investigators. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. The Lancet. Neurology 2012 Jan;11(1):42-53.
91. Ponomareva NV, Klyushnikov SA, Abramycheva NYu, Malina DD, Shcheglova NC, Fokin VF, Ivanova-Smolenskaya IA, Illariushkin SN. Alterations in neurophysiological patterns of brain activation in cognitive load on pre-clinical stages of Huntington’s chorea. In: Illariushkin SN, Levin OS, editors. Parkinson’s disease and movement disorders: guidelines for physicians. Proceedings of the III National Congress on Parkinson’s disease and movement disorders (with international participation). 2014 Sep 21–24; Moscow, RF. Moscow: RKI Sovero press; 2014: 264-8 (In Russian).
92. Beste C, Stock AK, Ness V, Hoffmann R, Lukas C, Saft C. A novel cognitive-neurophysiological state biomarker in premanifest Huntington’s disease validated on longitudinal data. Scientific Reports 2013;3:1797.
93. Lebreton F, Cayzac S, Pietropaolo S, Jeantet Y, Cho YH. Sleep physiology alterations precede plethoric phenotypic changes in R6/1 Huntington's disease mice. PLoS One 2015 May;10(5):e0126972.
94. Klyushnikov SA. Diagnosis of Huntington’s chorea at pre-clinical stage and atypical variants of disease (clinical, molecular and genetic comparison) [abstract from dissertation for the Degree of Candidate of Medical Sciences]. Moscow, 1998. 24 p. (In Russian).
95. Larsson MU, Almkvist O, Luszcz MA, Wahlin TB. Phonemic fluency deficits in asymptomatic gene carriers for Huntington’s disease. Neuropsychology 2008 Sep;22(5):596-605.
96. Aziz NA, Pijl H, Frölich M, Snel M, Streefland TC, Roelfsema F, Roos RA. Systemic energy homeostasis in Huntington’s disease patients. Journal of Neurology, Neurosurgery, and Psychiatry 2010 Nov;81(11):1233-7.
97. van Wamelen DJ, Aziz NA, Roos RA, Swaab DF. Hypothalamic alterations in Huntington's disease patients: comparison with genetic rodent models. Journal of Neuroendocrinology 2014 Nov;26(11):761-75.
98. Illarioshkin SN, Tanashyan MM, Maksimova MN, Zakharova MN, Ponomareva NV. Biomarkers in clinical neurology: early diagnosis and individual risk prediction. In: Neurology of the XXI century: diagnostic, therapeutic and research technologies: guide for physicians. 3-volume set. Piradov MA, Illariushkin SN, Tanashyan MM, editors. V. 1. Moscow: Atmosphera; 2015: 363-424 (In Russian).
  

[ Ñîäåðæàíèå âûïóñêà N 3 | Âûïóñêè æóðíàëà | Ñïèñîê æóðíàëîâ ]